Домашние и офисные сети под Vista и XP
Добавить в закладки К обложке
- Введение - Страница 1
- Часть IТеория компьютерных сетей - Страница 3
- Основные варианты и типы сетей - Страница 4
- Сеть своими руками – это сложно? - Страница 7
- Глава 2Проводные сети - Страница 8
- Стандарты проводной Ethernet - Страница 10
- Преимущества и недостатки проводной сети - Страница 13
- Глава 3Беспроводные сети - Страница 14
- Топология беспроводной сети - Страница 15
- Стандарты беспроводной сети - Страница 17
- Методы и технологии модуляции сигнала - Страница 21
- Технология ССК - Страница 24
- Протоколы шифрования и аутентификации в сети - Страница 25
- Правила и условия использования беспроводных сетей - Страница 27
- Преимущества и недостатки беспроводной сети - Страница 31
- Глава 4Нетипичные варианты сетей - Страница 33
- Сеть из телефонной проводки - Страница 34
- Сеть из электрической проводки - Страница 35
- Сеть из двух компьютеров - Страница 36
- Домашняя сеть - Страница 38
- Глава 5Модель сетевого взаимодействия и основные сетевые протоколы - Страница 39
- Модель ISO/OSI - Страница 40
- Что такое протокол и зачем он нужен - Страница 42
- Протокол NetBIOS/NetBEUI - Страница 43
- Протокол IPX/SPX - Страница 44
- Протокол TCP/IP - Страница 45
- Протоколы работы с электронной почтой - Страница 47
- Другие протоколы - Страница 48
- Часть IIСоздание компьютерной сети - Страница 50
- Сетевой адаптер - Страница 51
- Концентратор - Страница 52
- Мост - Страница 53
- Коммутатор - Страница 54
- Маршрутизатор - Страница 55
- Модем - Страница 56
- Точка доступа - Страница 57
- Антенна - Страница 58
- Кабель - Страница 59
- Оборудование для создания коаксиальной сети - Страница 61
- Оборудование для создания сети на основе витой пары - Страница 62
- Глава 7Подготовка к созданию сети - Страница 64
- Выбор конфигурации сети - Страница 65
- Проектирование сети - Страница 66
- Необходимое сетевое оборудование - Страница 67
- Требования к конфигурации компьютеров - Страница 68
- Глава 8Сеть на основе коаксиального кабеля - Страница 69
- Правила прокладки кабеля - Страница 70
- Подготовка кабеля - Страница 72
- Монтаж BNC-коннекторов - Страница 74
- Установка Т-коннекторов и терминаторов - Страница 76
- Глава 9Сеть на основе витой пары - Страница 77
- Правила прокладки проводки - Страница 78
- Подготовка кабеля - Страница 79
- Монтаж сетевых розеток - Страница 81
- Монтаж коннекторов RJ-45 - Страница 82
- Глава 10Беспроводная сеть - Страница 83
- Особенности организации радиосети - Страница 84
- Выбор беспроводных комплектующих - Страница 85
- Расположение оборудования - Страница 88
- Глава 11Сеть из двух компьютеров - Страница 90
- Нуль-модемное соединение - Страница 91
- Настройка операционной системы - Страница 93
- Соединение с помощью коаксиального кабеля - Страница 94
- Соединение с помощью кабеля на основе витой пары - Страница 95
- Соединение с помощью USB-кабеля - Страница 96
- Соединение через FireWire-порт - Страница 97
- Соединение через Bluetooth - Страница 98
- Глава 12Домашняя сеть - Страница 99
- Проектирование сети - Страница 100
- Прокладка кабеля - Страница 101
- Использование беспроводного оборудования - Страница 103
- Глава 13Установка и подключение сетевого оборудования - Страница 104
- Подключение концентратора или коммутатора - Страница 105
- Использование точки доступа - Страница 106
- Подключение маршрутизатора - Страница 107
- Установка сетевого адаптера в компьютер - Страница 108
- Часть IIIНастройка оборудования и операционной системы - Страница 111
- Создание домена - Страница 112
- Использование DNS-сервера - Страница 114
- Использование DHCP-сервера - Страница 115
- Механизм Active Directory - Страница 117
- Настройка доступа к файловым ресурсам - Страница 119
- Глава 15Настройка беспроводного оборудования - Страница 120
- Настройка точки доступа D-Link DWL-2100 АР - Страница 121
- Настройка параметров беспроводного адаптера - Страница 130
- Меры по защите беспроводной сети - Страница 133
- Глава 16Настройка сети в Windows ХР - Страница 136
- Подключение к домену или рабочей группе - Страница 137
- Настройка протокола и проверка связи - Страница 138
- Доступ к файловым ресурсам - Страница 140
- Доступ к принтерам - Страница 141
- Подключение к файловому ресурсу - Страница 142
- Подключение к сетевому принтеру - Страница 143
- Глава 17Настройка сети в Windows Vista - Страница 144
- Подключение к сети и настройка протокола - Страница 145
- Настройка сетевого обнаружения - Страница 146
- Настройка доступа к файловым ресурсам - Страница 147
- Настройка доступа к принтерам - Страница 148
- Подключение к файловому ресурсу - Страница 149
- Подключение к принтеру - Страница 150
- Глава 18Подключение сети к Интернету - Страница 151
- Немного об Интернете - Страница 152
- Варианты доступа в Интернет - Страница 153
- Организация общего доступа в Интернет - Страница 156
- Заключение - Страница 159
Преимущество оборудования стандарта IEEE 802.11g – его совместимость с оборудованием IEEE 802.11b, то есть можно легко использовать свой компьютер с сетевой картой стандарта IEEE 802.11b с точкой доступа стандарта IEEE 802.11g, и наоборот. Кроме того, потребляемая мощность оборудования этого стандарта намного ниже, чем аналогичного оборудования стандарта IEEE 802.11а, поэтому оборудование стандарта IEEE 802.11g по праву нашло свое применение в переносных компьютерах.
Как и в случае со стандартом IEEE 802.11b+, существует аналогичный стандарт IEEE 802.11g+, позволяющий работать со скоростью 108 Мбит/с, что уже выводит подобную сеть на уровень сети стандарта 802.3 100Base.
Стандарт IEEE 802.11hСтандарт IEEE 802.11h разработан с целью эффективного управления мощностью излучения передатчика, выбором несущей частоты передачи и генерации нужных отчетов. Он вносит некоторые новые алгоритмы в МАС-уровень, а также физический уровень стандарта IEEE 802.11а. Прежде всего это связано с тем, что в некоторых странах диапазон 5 ГГц используют для трансляции спутникового телевидения, радарного слежения за объектами и т. п., что может вносить помехи в работу передатчиков беспроводной сети.
Смысл работы алгоритмов стандарта IEEE 802.11b. в том, что компьютеры беспроводной сети (или передатчики) при обнаружении отраженных сигналов (интерференции сигнала) могут динамически переходить на другой диапазон, понижать или повышать мощность передатчиков, что позволяет эффективнее организовать работу уличных и офисных радиосетей.
Стандарт IEEE 802.11iСтандарт IEEE 802.11i разработан специально для повышения безопасности при работе беспроводной сети. С этой целью разработаны разные алгоритмы шифрования и аутентификации, функции защиты при обмене информацией, функции генерирования ключей и т. д.:
• AES (Advanced Encryption Standard) – алгоритм шифрования, позволяющий работать с ключами шифрования длиной 128, 192 и 256 бит;
• RADIUS (Remote Access Dial-In User Service) – система аутентификации с возможностью генерирования ключей для каждой сессии и управления ими, включающая в себя алгоритмы проверки подлинности пакетов и т. д.;
• TKIP (Temporal Key Integrity Protocol) – алгоритм шифрования данных;
• WRAP (Wireless Robust Authenticated Protocol) – алгоритм шифрования данных;
• CCMP (Counter with Cipher Block Chaining Message Authentication Code Protocol) – алгоритм шифрования данных.
Стандарт IEEE 802.11jСтандарт IEEE 802.11j разработан специально для условий функционирования беспроводных сетей в Японии, а именно – для использования дополнительного диапазона радиочастот 4,9 ГГц-5 ГГц.[7] Спецификация предназначена для Японии и расширяет стандарт 802.11а добавочным каналом в 4,9 ГГц.
Примечание
На данный момент частота 4,9 ГГц рассматривается как дополнительный диапазон для использования в США. Из официальных источников известно, что этот диапазон готовится для применения органами общественной и национальной безопасности.
Стандарт IEEE 802.11nСтандарт IEEE 802.11n – самый перспективный из всех беспроводных стандартов передачи данных, касающихся беспроводных сетей. Хотя он еще не прошел завершающую аттестацию, однако на рынке уже появляются устройства этого стандарта.
Согласно последнему из вариантов спецификации, оборудование, использующее этот стандарт, способно обеспечить скорость передачи данных до 300 Мбит/с, что, согласитесь, достаточно много и может спокойно составить конкуренцию таким проводным стандартам, как Ethernet 802.3 100Base и Gigabit Ethernet.
Стандарт в своей работе использует метод ортогонального частотного мультиплексирования (OFDM) и квадратурную амплитудную модуляцию (QAM), что обеспечивает не только высокую скорость передачи данных, но и обратную совместимость со стандартами IEEE 802.11а, IEEE 802.11b и IEEE 802.11g.
Однако для достижения планки в 300 Мбит/с потребовалось использование новой технологии передачи данных, каковой стала технология с множественным вводом/выводом (Multiple Input Multiple Output, MIMO). Смысл ее заключается в параллельной передаче данных по разным каналам с применением многоканальных антенных систем. Кроме того, изменена структура обмена информацией на канальном уровне, что позволило избавиться от передачи лишних служебных данных и увеличить эффективную пропускную способность.
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159