Essays

ОглавлениеДобавить в закладки К обложке

What program would one like to write? Whatever is least work. Except not quite: whatever would be least work if your ideas about programming weren't already influenced by the languages you're currently used to. Such influence can be so pervasive that it takes a great effort to overcome it. You'd think it would be obvious to creatures as lazy as us how to express a program with the least effort. In fact, our ideas about what's possible tend to be so limited by whatever language we think in that easier formulations of programs seem very surprising. They're something you have to discover, not something you naturally sink into.

One helpful trick here is to use the length of the program as an approximation for how much work it is to write. Not the length in characters, of course, but the length in distinct syntactic elements-- basically, the size of the parse tree. It may not be quite true that the shortest program is the least work to write, but it's close enough that you're better off aiming for the solid target of brevity than the fuzzy, nearby one of least work. Then the algorithm for language design becomes: look at a program and ask, is there any way to write this that's shorter?

In practice, writing programs in an imaginary hundred-year language will work to varying degrees depending on how close you are to the core. Sort routines you can write now. But it would be hard to predict now what kinds of libraries might be needed in a hundred years. Presumably many libraries will be for domains that don't even exist yet. If SETI@home works, for example, we'll need libraries for communicating with aliens. Unless of course they are sufficiently advanced that they already communicate in XML.

At the other extreme, I think you might be able to design the core language today. In fact, some might argue that it was already mostly designed in 1958.

If the hundred year language were available today, would we want to program in it? One way to answer this question is to look back. If present-day programming languages had been available in 1960, would anyone have wanted to use them?

In some ways, the answer is no. Languages today assume infrastructure that didn't exist in 1960. For example, a language in which indentation is significant, like Python, would not work very well on printer terminals. But putting such problems aside-- assuming, for example, that programs were all just written on paper-- would programmers of the 1960s have liked writing programs in the languages we use now?

I think so. Some of the less imaginative ones, who had artifacts of early languages built into their ideas of what a program was, might have had trouble. (How can you manipulate data without doing pointer arithmetic? How can you implement flow charts without gotos?) But I think the smartest programmers would have had no trouble making the most of present-day languages, if they'd had them.

If we had the hundred-year language now, it would at least make a great pseudocode. What about using it to write software? Since the hundred-year language will need to generate fast code for some applications, presumably it could generate code efficient enough to run acceptably well on our hardware. We might have to give more optimization advice than users in a hundred years, but it still might be a net win.

Now we have two ideas that, if you combine them, suggest interesting possibilities: (1) the hundred-year language could, in principle, be designed today, and (2) such a language, if it existed, might be good to program in today. When you see these ideas laid out like that, it's hard not to think, why not try writing the hundred-year language now?

When you're working on language design, I think it is good to have such a target and to keep it consciously in mind. When you learn to drive, one of the principles they teach you is to align the car not by lining up the hood with the stripes painted on the road, but by aiming at some point in the distance. Even if all you care about is what happens in the next ten feet, this is the right answer. I think we can and should do the same thing with programming languages.

Notes

I believe Lisp Machine Lisp was the first language to embody the principle that declarations (except those of dynamic variables) were merely optimization advice, and would not change the meaning of a correct program. Common Lisp seems to have been the first to state this explicitly.


Логин
Пароль
Запомнить меня