Сущность технологии СОМ. Библиотека программиста

ОглавлениеДобавить в закладки К обложке

Проиложение А. Эволюция объектов

Сокращенную версию этого очерка предполагается опубликовать в январском, 1998 года, выпуске Microsoft Systems Journal. Здесь этот очерк включен в приложение, поскольку в нем СОМ рассматривается в исторической перспективе.

Развитие объектно-ориентированного программирования перешло в стадию коммерческого применения в конце 1980-х годов. Центральной темой объектного ориентирования в середине 1980-х было использование классов, которые позволили разработчикам моделировать состояние и поведение как единый абстрактный модуль. Такая упаковка состояния и поведения помогает провести в жизнь модульный принцип через применение инкапсуляции. В классическом объектном ориентировании объекты принадлежали классам, а клиенты манипулировали объектами посредством основанных на классах ссылок. Такая модель программирования принята в большинстве сред и библиотек C++ и Smalltalk тех времен. В то время программисты, придерживающиеся строгого стиля, могли извлечь максимальную пользу из классового подхода, составляя программы на языках, широко применяющих процедуры. Однако действительно широкое распространение объектно-ориентированного программирования наступило только тогда, когда объектное ориентирование стало явно поддерживаться разработчиками языков программирования и сервисных программ. К числу программных сред, сыгравших важнейшую роль в обеспечении успеха объектного ориентирования, относятся оболочка МасАрр фирмы Apple на базе Object Pascal, первые среды SmallTalk фирм ParePlace и Digitalk, а также Turbo C++ фирмы Borland.

Одним из ключевых преимуществ использования среды разработки, явно поддерживающей объектное ориентирование, была возможность применения полиморфизма для интерпретации групп сходных объектов как совместимых друг с другом по типу. С целью поддержки полиморфизма в объектном ориентировании были введены понятия наследования и динамического связывания, что позволило явно группировать сходные объекты в коллекции (collections) связанных абстракций. Рассмотрим следующую простейшую иерархию классов C++:

class Dog {

public:

virtual void Bark(void);

};

class Pug : public Dog {

public:

virtual void Bark(void);

};

class Collie : public Dog {

public:

virtual void Bark(void);

};

Поскольку классы Collie и Pug оба совместимы по типу с классом Dog , то клиенты могут написать групповой (generic ) код следующим образом:

void BarkLikeADog(Dog& rdog) {

rdog.Bark();

}

Поскольку метод Bark является виртуальным и динамически связанным, механизмы диспетчеризации методов C++ обеспечивают выполнение нужного кода. Это означает, что функция BarkLikeADog не полагается на точный тип объекта, на который она ссылается; ей достаточно, чтобы это был тип, совместимый с Dog. Данный пример может быть легко переделан для любого числа языков, поддерживающих объектно-ориентированное программирование.

Приведенная иерархия классов является типичным примером тех приемов, которые применялись во время первой волны развития объектного ориентирования. Одной из основных характеристик этой первой волны было наследование реализаций. Наследование реализаций является мощным приемом программирования, если применять его строго по правилам. Однако при его неправильном применении результирующая иерархия типов может стать образцом чрезмерной связи между базовым и производным классами. Типичным недостатком такой связи является то, что зачастую неясно, должна реализация метода базовым классом вызываться из версии порожденного класса или нет. Для примера рассмотрим реализацию Bark класса Pug :

void Pug::Bark(void) {

this->BreathIn();

this->ConstrictVocalChords();

this->BreathOut(); }

Что произойдет, если реализация Bark основным классом Dog не вызвана, как в случае приведенного выше фрагмента кода? Возможно, метод базового класса записывает для дальнейшего использования, сколько раз лает (barks) конкретная собака (dog)? Если это так, то класс Pug вторгся в соответствующую часть реализации базового класса Dog. Для правильного применения наследования реализаций необходимо нетривиальное количество внутреннего знания для обеспечения сохранности базового класса. Это количество детального знания превышает уровень, требующийся для того, чтобы просто быть клиентом базового класса. По этой причине наследование реализации часто рассматривается как повторное использование белого ящика.


Логин
Пароль
Запомнить меня